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Abstract. The nonlinear kinetic equation describing aerosol coagulation and deposition is 
studied analytically by a new method based upon successive coalescences. The solution is 
represented as an infinite series, each term of which denotes a generation of collisions and a 
consequent change in the aerosol number and volume distribution function. The method is 
illustrated by using a constant coagulation kernel and a deposition term which depends upon 
a power of the particle volume (zero or unity). These limitations on the physical processes 
inhibit use of the results for direct comparison with experiment hut do provide evidence that 
the method may be extended to physically more realistic processes. 

The success of the method, as shown by its rapid convergence, rests upon a novel use of 
the central limit theorem of statistics applied to causal systems. The techniques are of 
general interest in the solution of the nonlinear Boltzmann equation in the kinetic theory of 
gases and in the case studied here show that the volume distribution of successive 
generations of coalescences tends rapidly to a gamma distribution. 

The success of the central limit theorem method leads us to study the solutions that can 
be obtained by assuming that the volume distribution function follows the gamma dis- 
tribution throughout its history. Closed form solutions are obtained with a constant 
coagulation kernel and a deposition rate that is proportional to any power of particle 
volume. Numerical results are obtained for several cases which indicate that the values 
m = 0 and 1 for the deposition rate are not unreasonable for the purposes of general 
comment. 

1. Introduction 

The resurgence of interest in the behaviour of aerosols in the atmosphere and in closed 
containers, such as nuclear reactor buildings, has led to further mathematical studies of 
the underlying coagulation equation of Muller (Friedlander 1977, Mulholland and 
Baum 1980). The,state of the art on mathematical developments up to 1972 has been 
comprehensively surveyed by Drake (1972). In his article, Drake considers both exact 
and approximate techniques for solving the nonlinear kinetic balance equation for the 
volume distribution function n(u,  t )  of aerosol particles at time t. The purpose of the 
present article therefore is to extend some of the results reported by Drake and to 
introduce a new technique which appears to off er the promise of gaining further insight 
into the effect of the coagulation and deposition mechanisms on the particle distribution 
function. 

0305-4470/81/082073 + 17$01.50 @ 1981 The Institute of Physics 2073 
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The kinetic equation of Miiller is made more general by the addition of a deposition 
term. This equation is then cast into a more suitable form under the assumption of a 
constant coagulation kernel and a diffusion coefficient which is proportional to v m. For 
m = 0 and 1 it is found that exact solutions can be obtained for the kinetic equation. The 
value m = 0 corresponds physically to a leakage term caused for example by a crack. 
Although the value m = 1 does not correspond to any physical process it enables the 
accuracy of approximate methods to be assessed which may have wider application. 
Such an approximation is obtained by considering the coagulation process as a series of 
successive coalescences. The central limit theorem of statistics is used to sum the 
resulting series and this is found to lead to very accurate results for n ( u ,  t )  when 
compared with the exact results mentioned earlier. 

The results of the central limit theorem calculations suggest that the gamma 
distribution will be very useful for representing the volume distribution function during 
its lifetime. We therefore examine some exactly soluble models involving this function 
which are applicable for arbitrary values of m and from these results can comment on 
the value of the m = 0 and 1 cases in studying real situations. 

Although the work described in this paper is related to aerosols, the techniques can 
profitably be used to understand the more general nonlinear Boltzmann equation for 
gases. Models of this equation are being studied which lead to analytically soluble 
results for molecular distribution functions. Futcher eta1 (1980), Hendriks et a1 (1980) 
and Futcher and Hoare (1980) have discussed several methods for solving the nonlinear 
Boltzmann equation which bear a strong resemblance to those developed indepen- 
dently in aerosol work. The results of the present work should therefore be considered 
in this wider context. 

2. The coagulation equation 

If we consider a medium in which the spatial variation of aerosol density can be 
neglected, then a balance equation for the particle volume density distribution function 
n ( ~ ,  t )  can be written as 

where the initial condition n (U, 0) is prescribed. 
K ( u ,  U )  is the coagulation kernel for the mechanism of interest, e.g. Brownian, 

sedimentation, turbulent agglomeration, etc (Hidy and Brock 1970). 
Equation (1) has been solved exactly and approximately by several authors when 

various modelled forms are used for K ( u ,  U). It is often of interest, however, to include 
in equation (1) the effects of deposition, by diffusion or sedimentation, to the boun- 
daries of the system; this is particularly important in closed vessels. In this case an 
additional term of the form 

can be added to the right-hand side of equation (1) where the nature of R ( u )  depends 
upon the mechanism of deposition. 

This more general type of coagulation equation has not been studied in much detail 
from the analytical point of view, but clearly such an analysis is desirable. The two most 
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common forms of R ( v )  arise from sedimentation and Brownian diffusion. Thus if we 
consider a closed vessel of surface area S ,  volume V and height H, we can write: 
Stokes settling 

X ( v )  = V,(U)/H 

where V,(v) is the Stokes velocity, the form of which is 

with p the particle density, g the acceleration due to gravity and r] the coefficient of 
viscosity of the host medium. Thus for this case R ( u ) a v 2 / 3  and m = 5. 
Brownian diffusion 

2 

where S is the diffusion boundary layer thickness and D ( v )  is the diffusion coefficient for 
Brownian motion; this takes the form 

D ( u )  = (4.rr/3)”3(kT/6.rr77v”3). 
1 R ( u )  in this case is therefore proportional to v--’l3 and m = -3. 

The behaviour of n (U, t )  in equation (1) with these additional terms is clearly of some 
practical interest. 

There is also the question of leakage from a closed container. If it is assumed that 
particles leak out through a crack or hole at a rate which is independent of their volume, 
then an appropriate leakage rate can be given as 

R ( v ) =  LS= Ro 

where L is the leakage rate per unit area per unit time. In this case m = 0. 
To make further progress, we have found it convenient to approximate K(u,  U )  by a 

constant K and to set R (U) = R,vm. Thus by changing m both diffusion ( m  = -3)  and 
sedimentation ( m  = 3 )  can be simulated. Other values of m have been suggested for 
diffusion but the general principle remains. The constant coagulation kernel restricts 
the coagulation mechanism to a Brownian-like form but this is not unrealistic in 
practice. The equation for study is therefore of the form 

In what follows we shall show how some exact and approximate solutions of equation 
( 3 )  may be obtained. 

3. Exact solutions 

We note that two quantities of well-defined physical interest are 
m 

N(t) = du n(u, t )  
0 

(4) 
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Le. the total particle number density, and 
03 

4 ( t )  = jo du un (U, t )  

i.e. the fraction of material in suspension per unit volume. Calculation of these two 
averages over n ( u ,  t )  is a major task of this paper. 

Because of the definition of N(t ) ,  we can rewrite equation (3) as follows 

K "  
an(v,  t ) / a t  = -[Rmum +KN(t)]n(v ,  t )+-  dun(u ,  t ) n ( ~  - U ,  t ) .  

2 lo 
It would seem reasonable, therefore, to seek solutions in the form 

n ( u ,  t )  = No*(u, t )  exp { -R,t:'"t-K~o'dt' N ( t ' ) }  

where No = N(0) .  Inserting equation (7)  into ( 6 )  and rearranging leads to 

( 7 )  

-*(& a t )  = - N°Kexp( -K/otdt'N(t')) /"dU'Y(v', t)?(u -U', t )  
at 2 0 

x exp(R,t[u" -U'" - (U -U')"]). (8) 

Clearly, the ansatz (7) will only be suitable for m = 0 and 1 and we therefore note that 
what follows in this section is not directly related to the diffusion and sedimentation 
processes discussed above. However when m = 0 we can simulate the leakage process 
and find 

a NoK 
-*(U, t )  = - exp[ -R,~-K Jo' dt' ~ ( t ' ) ]  I" du' *(U', t ) ? ( ~  -U', t )  
at 2 0 

and when m = 1 

-*(U, a t )  = - N°Kexp( -K[ordr'N(t')) l"dv'Vr(v', ?)*(U -U', t ) .  
at 2 0 

Now if we define a generalised time in the case of m = 0 as 

f '  

e( t )  = 1 -- dt' e-Rot' exp[ -K lo dt" N ( P ) }  K? lo' 
and in the case of m = 1 as 

e ( t )  = 1 -- Kp lo' dt' exp ( -K  lo" dt"N(t")} 

(9) 

then, in both cases, we find that V ( U ,  t )  or *(U, e )  as we now call it obeys the equation 

a 
ae --*(U, e )  = lou du' *(U', e)Vr(u -U', 6 )  

subject to *(U, 1) = * o ( u ) .  
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Equation (13) is readily solved by Laplace transforms and leads to 

ds esu 
v(v ,  e) = - 

2x i  ' I  e - 1 + (l/Qo(s)) 

where 

We conclude that the nature of v(v, 6) and hence n(v, t )  depends crucially on the 
initial distribution. This is in contrast to linear problems where the initial distribution 
generally affects only the amplitude of the solution and not its functional form 
(Mulholland and Baum 1980). We shall consider below some special solutions of 
equation (14) and also an approximate but generally more flexible technique. 

4. Rectangular initial distribution 

To illustrate the dependence of the solution on the initial conditions let us consider a 
uniform distribution of particle sizes up to a cut-off value vmax = (. Thus 

n ( v ,  0) =No/(;  O s  v C (  

= 0 ;  v 

The corresponding Laplace inversion is from equation (14) given by 

ds esu (1 - e-") 
*(U, e) =- 

2 x i  ' I  s l -  1 + e  + (1 -e) e-S'' (17) 

The poles of the integrand are given by the roots of 

s t -  1 + e  +(I  - e) e-" = 0. 

Z e Z = a  (19) 

(18) 

If we put Z = (6 - 1) e-" then equation (18) can be written 

But -1 C a S O  and from other work (Sengupta and Srikantiah 1974) we know that this 
equation has one real root Zo and an infinite number of complex conjugate roots 
2, = a, f i&. The integral in (17) can thus be written 

e e 
n = l  1 +zn 

where 2; is the complex conjugate of Z,. The numerical evaluation of N ( t )  in this case 
is tedious but straightforward. 
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5. The gamma distribution 

A very flexible and useful form of initial condition may be introduced via the gamma 
distribution (Scott 1968). Thus we assume that 

It has been found that v =$  gives a fair representation of some aerosol distributions 
(Levin 1954). In equation (22) the parameters v and v may be defined in terms of the 
moments 

1 "  
u ' , , , = ~ / ~  dt.v"n(u) (23) 

as follows 
61 = G(v + 1) 

8, = f i y  r ( m  + I/ + I ) / ( ~  + i)mr(v + 1). 
and 

When the gamma distribution is used in equation (14) we find 

If v is an integer the residue theorem leads to simple results. Thus, for example, for 

(27) 
v = o  

T(V, 0) = (1/6) e-"'. 

T ( v ,  19) = (l/v*) e-""sinh{(u/v*)(l- 0)1'2}/(1 - 

For v = 1 

(28) 
For v = 2 the solution contains complex conjugate roots, which can be rearranged to 
give 

For v fractional, in addition to a number of poles, a branch point arises in the 2 plane at 
Z = 0 and it is necessary to introduce cuts. For example, when v = 3 we get poles at 
(1 - (1 - e)2/3(-l *i&)/2. This leads to 
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To obtain N( t )  and 4(t) it is necessary to substitute n(u,  t) back in the definitions 
given by equations (4) and ( 5 )  and evaluate numerically the resulting nonlinear 
equation. However the case v = 0 can be done without this complication and it is 
readily seen that the problem reduces to the solution of the following differential 
equations: 
tn = 0 

and 

m = l  

and 

dN/dt = -RON -$KN2 (3 1) 

d4/d t  = -Ro+ (32) 

dN/dt = -RI4 -$KN2 (33) 

dbld t  = - ~ R I ~ ~ / N .  (34) 

These equations represent the exact solutions for m = 0 and 1, respectively with an 
initial condition 

n ( v ,  0) = ( N O / V O )  e-"'"O. (35) 
The solutions of these equations are given in the Appendix (but see 0 7). 

6. The method of successive coalescences 

The main difficulty in evaluating the Laplace transform of equation (14) lies in the 
nature of the initial condition. However, if we rewrite the equation in the form 

and expand by the binomial theorem, the following series arises: 

1 m 
* ( U ,  e )  = 1 (1 -e)"- I ds eSU~o(s)" .C1.  

n = O  2 r i  (37) 

The physical meaning of this series is readily appreciated since the nth term corresponds 
to the distribution of those particles that have had n coalescences. We therefore call 
this method the method of successive coalescences. The solution is written 

To make the method useful we either have to assume that the series converges rapidly, 
have some interest in the first few F,, or devise a method for summing the series. We 
shall discuss below the latter possibility. 

6.1. The central limit theorem 

It is well known (Papoulis 1962) that if we have a Fourier transform 
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then its inverse will be 

1 "  
Fn([)  = - I dk eigk fi gi(k). 

2T -m j = l  

It follows from the convolution theorem that 
m 

= d51 G 1 ( 0 3 2 ( 5  - 51) 

and in general 

or 

where Go = 1, GI(.$) = FI(.$) and 
. .m 
1 

Gn([) =- J dk eiskg,(k). 
2~ -m 

(43) 

Now the central limit theorem states that F,,([) may be approximated by a normal 
distribution, provided 

satisfies 

When these conditions are satisfied 

where lz >> 1 and 

6.1.1. Causal functions. If the functions G,([) are causal, i.e. they vanish when their 
argument becomes negative, the CLT needs modification. The result is that 
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where 

and 

p + 1 = m:/ s ;  

y = s:/m,. (53) 

( 5 2 )  

Equation (50) is the so-called 'gamma distribution' and is just the form we require for 
the successive coalescence problem if we recognise that all gi(s) are identical. Thus 

hence 

m, = nml ( 5 5 )  

hence 
2 S ,  = nSI2. 

From these parameters we readily find that 

p + 1 = nm:/sI2 

y = S t 2 / m l .  

(57) 

It should be noted that, in practice, the convolutions rapidly tend to the CLT form of 
F, (5) even for initial distributions that are markedly non-normal. We see therefore that 

where 

F,, + 1 = (n  + I )m:/S '2  

7, = SI2/ml. 

If the initial distribution is V(v, 0) then 
m 

ml = jo dv vW(v, 0) 

and 
W 

SI2  = lo du(u - ml)'V(v, 0) .  

Thus the solution can be written as 
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6.2. Initial conditions 

If three different initial conditions are considered we find the following. 
(i) Gamma distribution 

p,, + I = ( n  + l ) (v  + 1) (66) 

-& = 6. (67) 
(ii) Delta distribution 

j L  = [ ? wit: - (7 W i 3 ' ] / ?  Wi& 

(NB this can be solved exactly from equation (43) and the solution comes out in terms gf 
sums of delta functions.) 
(iii) Uniform distribution 

2 

If we consider the gamma distribution, we note that for v = 0 

W u ,  e) = ( l / O )  exp(-&/v*) (73) 

which is exact. Similarly, v = 1 gives the exact result. Indeed, a little thought shows that 
if the initial distribution is a gamma one then this is preserved in collisions, just as a 
gaussian is preserved over the range (-00, m). For the gamma distribution then we have 
an exact solution which is equivalent to that given by the contour integral of equation 
(26). The speed of convergence to the gamma form for other initial distributions can be 
readily checked by evaluating F I ,  F2, etc exactly, via equation (37). 

As an example of the rapidity of convergence to the gamma distribution, we have 
taken the uniform distribution of (iii) above and performed the convolutions. The 
result is easily seen to be 

where H ( v )  is the Heaviside step function. 
Figure 1 shows the F,(u) in the exact case and for the approximate gamma case of 

equation (65). The percentage error is given also. It is readily observed that after n = 3 
the distributions reduce to a gamma form except in the 'wings' where the amplitude is 
small and hence makes little contribution to the total number density. The error over 
the dominant part of the distribution is less than 10%. These results are true for other 
initial conditions and give us confidence in the usefulness of the method of successive 
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100 
PERCENTAGE ERROR 

Figure 1. Example of the central limit theorem. EXACT denotes the shape of successive 
coalescences F,(u) following a rectangular initial distribution. GAMMA is the correspond- 
ing approximation found from the CLT. PERCENTAGE ERROR gives the fractional error, 
defined by 

FEXACT -FGAMMA 
FEXACT 

coalescences and in the gamma distribution., Indeed, it would seem that an extension to 
arbitrary kernel would be successful. This can be illustrated by writing the basic 
equation as 

= $1 du K ( u ,  v - U ) E ~ - ~ ( C ( ,  t)nl-l(u - U, t )  (75) 
0 

where values no, nl, , , . etc, describe sequential coalescences. We have not explored 
this equation further but it will prove useful if the terms converge rapidly. 

As far as the central limit theorem is concerned, it is most appropriate to evaluate 
the first few terms in the expansion in successive coalescences exactly and then sum the 
remainder by the CLT. Such a technique has proved to be of great value in neutron 
scattering problems (Williams 1966, Syros 1966). 

It should not be inferred that, because each term in the series of successive 
coalescences tends to a gamma distribution, the total volume density distribution is also 
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a gamma distribution. Indeed the exact solutions for 1, and 2 show that this is not the 
case, Nevertheless, we explore in the next section some consequences of making this 
assumption. 

7. An approximation using the gamma distribution 

A shortcoming of the analysis in the previous sections lies in the use of m = 1 for the 
deposition term. This value does not correspond to any physical process and therefore 
it is important to establish that results deduced from it are not so special or pathological 
as to be of little value in the general case. To this end we seek an approximate solution 
of equation (3) for arbitrary m and investigate its properties for any pathological effects. 
The natural occurrence of the gamma distribution leads us to investigate the possibility 
that the particle volume distribution function can be approximated over its complete 
lifetime by a function of the form 

where v is fixed, but N ( t )  and U( t )  are determined by equation (3). Equation (76) has 
the added property of similarity, that is we may write, with (v  + 1 ) U  = qh/N (Schumann 
1940), 

where 
(v  + 1)”+l 

x u  exp[-(v + l)x]. 
*(‘) = qv + 1) 

It is known that many distribution functions possess the similarity property in limiting 
situations and so this adds further to our expectation that the gamma distribution will be 
acceptable for general guidance. 

To find equations for N and 0 we insert equation (76) into equation (3) and take 
zeroth- and first-volume moments. This leads to 

and 

T ( m + v + 2 )  
= 0. 

d 
-(NU) + R,N~,+’ 
dt r(v + 2) 

It is shown in the Appendix how an exact solution of these coupled nonlinear 
differential equations can be obtained. However, we note that for m = 0 and 1 the 
equations, and hence the solutions, are identical with the exact ones as obtained from 
equations (31) and (34). This gives confidence in their overall applicability. 

The results in the Appendix show that we may write the solutions of equations (79) 
and (80) as follows 
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and 

where fi = N/No,  $ = 4/&, v' = G / u o ,  q = (U + l ) / (m + U  + 1) and 

(1 +m)(u + 1) - 
A =  A 

(U + 1 - m 2 )  

KNA*m r ( u  + 1)(1+ v)" 
2Rm40"r(v + m + 1) 

(1 + m ) ( v  + m  + 1) - 
( Y +  1 - m 2 )  

7 =  7 

(84) 

7 = KNot/2. (86) 

Physically, A denotes the ratio of the coagulation rate to the deposition rate at zero 
time. For very large Y we can write 

A = A, = (1 + m)KN;+" 

7 = T m  = (1 f m)?. 

From the above equations it is possible to study the way in which N and 4 vary with 
time for a range of initial distributions and arbitrary values of m. For U = 0 the values of 
m = 0 and 1 give exact solutions, and the other values of m do not lead to exact solutions 
but it is very likely that they do not deviate appreciably from the truth. These points can 
be illustrated numerically. Thus we show in figures 2, 3 and 4 values of fi, 4 and 6, 
respectively for U = 0 and A = lo2  and a range of values of m. 

Figure 2 shows the reduced number density fi as a function of reduced time 7 for 
m = 1, $0, -4 and -0.595. The values of 0 and 1 are chosen because they correspond 

Figure 2. The reduced number density fi as a function of the reduced time E 
and the value of m is indicated on the curve. 

= lo2, v = 0 
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7 

-0  595 

4 

Figure 3. The reduced volume fraction 6 as a function of the reduced time 7. A = lo2,  Y = 0 
and the value of m is indicated on the curve. 

Figure 4. The reduced mean particle volume 3 as a function of the reduced time 7. AT = IO’, 
Y = 0 and the value of m is indicated on the curve. 

to the special models considered for the exact solution. $ and -+ are chosen because 
they are the values generally associated with settling and diffusion, respectively. The 
value of -0.595 has been suggested as being superior to - 3  in practical cases. We 
observe that, as m decreases, the rate of reduction of suspended particles also 
decreases. The results for na = 1 and 5 are not significantly different nor are the results 
for m = 0 and -$. The corrected value of -0.595 seems to make little difference up to 
7. = 30 although its effect will grow for longer times. There appears to be no special 
significance attaching to m = O  or 1 and so results obtained from their use can be 
considered as typical of general m. 

Figure 3 shows the reduced volume fraction as a function of reduced time 7.. This 
quantity is much more sensitive to values of m although m = 1 and 5 are still similar in 
general behaviour as are m = 0 and -$. If the value m = -0.595 is correct then it 
suggests that deposition by diffusion is a much less efficient process than the normal 
Brownian effect would predict. 

Figure 4 is interesting because it seems to be the most sensitive indicator of aerosol 
behaviour to changes in values of m. The figure shows the mean particle volume 6 ( t )  
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normalised to its value at t = 0 as a function of reduced time. For m = 1 and $the mean 
volume increases with time up to a maximum and then decreases. This effect can be 
explained physically as being due to the coagulation process initially causing an increase 
in particle size, but later when the settling -process becomes dominant, the larger 
particles are removed more rapidly than the smaller ones thereby reducing the average 
size of particle remaining in suspension. For m < 0, the maximum is absent due to the 
fact that for diffusion the diffusion coefficient becomes smaller as the average particle 
size increases. Detailed studies indicate that, for m = 0, the value of ;(CO) tends 
monotonically to a constant value. The existence of a maximum in v'can be proved from 
equations (79) and (80) by noting that at the maximum 

dfildt = 0 (87)  
or 

N dr$ldt = 4 dN/dt. 

Hence from equations (79)  and (80) 

Thus for a maximum to exist at finite 7 

lYm+v+2) r ( m + v + l )  

or m > O .  
In general, therefore, the value m = 1 simulates the behaviour of m = 5. m = 0 does 

not completely cover the properties of m = - 5 but over the initial period of the aerosol 
life it gives a reasonable description of the effect of diffusion which is not dissimilar to 
leakage. 

We have also calculated values of fi, C$ and U' for other values of v. The basic results 
are similar to the case of v = 0 but there are, of course, variations in detail. We note that 
as v + CO the values of fi and C$ tend to finite limits independent of v. Examination of 
equation (78)  shows that this case corresponds to $ ( x )  = S ( x  - 1). Thus as v increases, 
the distribution narrows to a delta function. The gamma distribution can therefore 
describe a wide variety of similarity functions. 

An extension of this technique would be to leave v as an unknown and to determine 
it by taking a further moment of equation (3). The resulting coupled nonlinear 
differential equations would have to be solved numerically, but could prove to give an 
accurate description of n(0, t ) .  

8. Conclusion and summary 

The purpose of the present paper has been threefold. Firstly, to examine the mathe- 
matical problems caused by the addition of a deposition term to the coagulation 
equation, secondly to test the efficiency of the central limit theorem for summing the 
effects of successive coalescences and thirdly to check the value of using a form of the 
deposition law proportional to u m  where m = 0 or 1. 

We may conclude that significant difficulties are introduced when a deposition term 
is added. In particular, the usual canonical transformation for casting the constant 
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coagulation problem into a form suitable for Laplace transforms is only successful for 
m = O  or 1. In such cases, however, exact solutions can be obtained and we have 
illustrated this by calculating the volume distribution as a function of time for a variety 
of initial conditions. To calculate the number density and volume fraction, however, 
usually requires the subsequent solution of a set of nonlinear equations. 

The difficulty of inverting the Laplace transform for a general source distribution 
has been overcome by the application of the central limit theorem of statistics. This 
enables the volume distribution of successive coagulations to be approximated by a 
gamma distribution. Numerical calculations show that after a few, possibly only three, 
generations of coagulation the distribution function closely resembles the gamma form. 
On this basis we propose a numerical algorithm that should converge well for more 
realistic deposition rates and coagulation kernels. 

Finally, to assess the physical significance of using a deposition rate proportional to 
U " ( m  = 0, l), we have assumed that the gamma distribution holds throughout the life of 
the aerosol but with a time dependent amplitude and mean. Equations for the 
amplitude and mean are obtained by taking moments of the coagulation equation and 
relating them to the particle number density and the suspended volume fraction. We 
find that the behaviour for m = 1 and m = $  is quite similar in general form as is the 
behaviour for m = 0 and m = - 3 .  Thus these two values are physically reasonable and 
exact results obtained by their use are likely to give guidance about the more realistic 
cases. Indeed, m = 0 does realistically simulate leakage from a container. 
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Appendix 1. Solution of nonlinear differential equations 

Equations (79) and (80) are a pair of coupled nonlinear differential equations which by 
suitable transformation can be solved exactly as we shall show. 

Let us write the equations as 

dNldt  = -A,,Nt-"4 - iKN2 (Al.l)  

and 

dc$/dt = -B,,4m+1N-m (A1.2) 

where 

A,, = R,r(v + m + l ) / r ( v  + 2) (A1.3) 

B,, = R m I ' ( v + m + 2 ) / ( v + l ) I ' ( ~ + 2 ) .  (A1.4) 

Dividing (Al . l )  by (A1.2) we get 

d N  N2+, N 
dt$-P- 4 m + ~  +qT _- 

where p = K/2B,, and q = A,,,lBVm. 

(A1.5) 



Nonlinear Boltzmann equation 2089 

Now substituting N = y a  and q5 = x p  we find that by setting CY = -l/(l+ m )  and 
p = -l/m, equation (A1.5) reduces to 

(A1.6) 

This equation may be integrated exactly and the result when combined with (A1.2) 
leads to equations (81) and (82) of the text. 

Appendix 2. Further considerations on the m = 0 case 

If aerosol coagulation is taking place in a finite volume of gas, free to expand, as for 
example in a nuclear air blast, then the coagulation equation will have added to it a term 
of the form 

- ( a h  V ( t ) / a t ) n ( ~ ,  t )  

where V ( t )  is the volume of the cloud at time t. Thus if 

Ro = a In V(t)/at 

the theory developed for m = 0 can immediately be exteided by replacing Rot by 
In (V( t ) /  V ( 0 ) ) .  The time dependence of V ( t )  will be determined by the nature of the 
blast and the atmospheric conditions. 
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